Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney
نویسندگان
چکیده
Multicopper ferroxidases (MCFs) play an important role in cellular iron homeostasis. However, the role of MCFs in renal metabolism remains unclear. We used Hephaestin (Heph) and Ceruloplasmin (Cp) single or double (Heph/Cp) knockout (KO) mice to study the roles of MCFs in the kidney. Renal iron levels and the expression of iron metabolism genes were examined. The non-heme iron content both in the renal cortex and medulla of Heph/Cp KO mice was significantly increased. Perls' Prussian blue staining showed iron accumulation on the apical side of renal tubular cells in Heph/Cp KO mice. A significant increase in ferritin protein expression was also observed in the renal medulla and cortex of Heph/Cp KO mice. Both DMT1 and TfR1 protein expression were significantly decreased in the renal medulla of Heph/Cp KO mice, while the expression of DMT1 protein was significantly increased in the renal cortex of these animals. Significant increase in proteinuria and total urinary iron was observed in the double knockout mice, and this was associated with compromised structural integrity. These results suggest that KO of both the HEPH and CP genes leads to kidney iron deposition and toxicity, MCFs could protect kidney against a damage from iron excess.
منابع مشابه
Large scale expression and purification of secreted mouse hephaestin
Hephaestin is a large membrane-anchored multicopper ferroxidase involved in mammalian iron metabolism. Newly absorbed dietary iron is exported across the enterocyte basolateral membrane by the ferrous iron transporter ferroportin, but hephaestin increases the efficiency of this process by oxidizing the transported iron to its ferric form and promoting its release from ferroportin. Deletion or m...
متن کاملHephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain.
BACKGROUND Iron accumulation in the central nervous system (CNS) is a common feature of many neurodegenerative diseases. Multicopper ferroxidases (MCFs) play an important role in cellular iron metabolism. However, the role of MCFs in the CNS in health and disease remains poorly characterized. OBJECTIVE The aim was to study the role of hephaestin (HEPH) and ceruloplasmin (CP) in CNS iron metab...
متن کاملCeruloplazmina, hefajstyna i cyklopen: trzy multimiedziowe oksydazy uczestniczące w metabolizmie żelaza u człowieka* Ceruloplasmin, hephaestin and zyklopen: the three multicopper oxidases important for human iron metabolism
Multi-copper oxidases are a group of proteins which demonstrate enzymatic activity and are capable of oxidizing their substrates with the concomitant reduction of dioxygen to two water molecules. For some multi-copper oxidases there has been demonstrated ferroxidase activity which is related to their specific structure characterized by the presence of copper centres and iron-binding sites. Thre...
متن کاملThe Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice
Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role ...
متن کاملCloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins.
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016